O212-S21-O211	100.58 (9)	C201-C202-C203	118.2 (4)
O213-S21-0211	107.60 (11)	C202-C203-C204	113.1 (4)
O214-S21-0211	108.40 (11)	C302-C203-C304	117.7 (4)
O213-S21-0212	112.00 (11)	C203--C204-C205	115.5 (4)
O214-S21-O212	114.78 (12)	C204-C205-C206	114.7 (4)
O214-S21-0213	112.49 (12)	C304-C205-C306	119.3 (4)
O322-S22-O221	103.2 (2)	C205-C206-C207	115.5 (4)
O223-S22-O221	111.8 (2)	C206-C207-C208	115.8 (4)
O324-S22-0221	109.2 (2)	C306-C207-C308	119.6 (4)
O222-S22-O221	102.6 (2)	C207-C208-C209	115.4 (5)
O224-S22-O221	103.8 (2)	C208-C209-C210	116.2 (4)
O323-S22-O221	100.0 (2)	C308-C209-C310	117.8 (4)
O223-S22-O222	114.1 (2)	C209-C210-C211	115.0 (4)
O223-S22-O224	112.5 (2)	$\mathrm{C} 210-\mathrm{C} 211-\mathrm{C} 212$	114.4 (4)
O222-S22-0224	111.1 (2)	C310-C211-C312	114.2 (4)
O322-S22-0323	115.7 (3)	C211-C212-O221	108.5 (4)
O324-S22-O323	108.5 (3)	C201-C302-C203	120.8 (4)
C11-O111-S11	115.8 (2)	C203-C304-C205	119.4 (5)
C201-O211-S21	117.07 (15)	C205-C306-C207	119.4 (4)
C212-O221-S22	115.7 (2)	C207-C308-C209	118.2 (5)
C312-O221-S22	118.1 (3)	C209-C310-C211	115.5 (5)
$\mathrm{O} 111-\mathrm{Cl1-C12}$	107.8 (2)	C211-C312-0221	108.1 (4)
$\mathrm{C} 11-\mathrm{Cl2}-\mathrm{Cl} 3$	110.9 (2)		
$\mathrm{O} 111-\mathrm{Cl1-C12-C13}$		173.1 (2)	
O211-C201-C202-C203		53.7 (5)	
O211-C201-C302-C203		-50.6 (6)	
C310-C211-C312-0221		-175.2 (5)	

Symmetry code: (i) $1-x, 2-y, 1-z$.
Structure solution in space group $P 1$ gave the same disorder as in $P \overline{1}$, i.e. all atom positions including disordered pairs found in $P \overline{1}$ were also found in $P 1$. Therefore, the disorder cannot be explained by a wrong choice of the space group. The positions of H atoms bonded to C atoms were calculated at a distance of $0.97 \AA$, their U values set to 1.3 times the equivalent U values of their bonding partners, and were refined riding on the C atoms. The H atoms of the water molecules were found from difference Fourier synthesis and refined without constraints. Two independent population parameters were refined, one for the disordered chain, one for the disordered sulfate group. They were $0.479(5) / 0.521(5)$ for the chain and 0.412 (8)/0.588(8) for the sulfate group. Refinement of the population parameter of the water molecule gave 0.99 (1), therefore it was fixed to 1.0 in the final refinement cycles. After refinement, the highest difference density peak was found near the S atom of the disordered sulfate group.
Data collection: Enraf-Nonius (1977) CAD-4 diffractometer system. Cell refinement: Enraf-Nonius (1977) CAD4 diffractometer system. Data reduction: PROCESS in MolEN (Fair, 1990). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SCHAKAL92 (Keller, 1992). Software used to prepare material for publication: SHELXL93.

[^0]
References

Abrahamsson, S.. Dahlén, B., Löfgren, H. \& Pascher, I. (1978). Prog. Chem. Fats Lipids, 16, 125-143.
Coiro, V. M., Mazza, F. \& Pochetti, G. (1986). Acta Cryst. C42, 991-995.

Coiro, V. M., Manigrasso, M., Mazza, F. \& Pochetti, G. (1987). Acta Cryst. C43, 850-854.
Enraf-Nonius (1977). CAD-4 Operations Manual. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
Keller, E. (1992). SCHAKAL92. A Computer Program for the Graphic Representation of Molecular and Crystallographic Models. University of Freiburg, Germany.
Rudert, R., Vollhardt, D. \& Czichocki, G. (1996). Z. Kristallogr. 211, 43-45.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Sundell, S. (1977). Acta Chem. Scand. Ser. A, 31, 799-807.

Acta Cryst. (1996). C52, 1673-1679

Two Derivatives of Lithium Isodicyclopentadienide: $[(1,2,3,3 a, 7 a-\eta)-4,5,6,7$-Tetra-hydro-4,7-methanoindenido] ($N, N, N^{\prime}, N^{\prime}$ tetramethylethylenediamine)lithium and Bis(1,4,7,10-tetraoxacyclododecane)lithium(1+) Bis[(1,2,3,3a,7a- η)-4,5,6,7-tetra-hydro-4,7-methanoindenido]lithate(1-)

Judith C. Gallucci, ${ }^{a}$ Mark R. Sivik, ${ }^{a}$ Leo A. Paquette, ${ }^{a}$ Florence Zaegel, ${ }^{b}$ Phlippe Meunier ${ }^{b}$ and Bernard Gautheron ${ }^{b}$
${ }^{a}$ Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA, and ${ }^{b}$ Laboratoire de Synthèse et d'Electrosynthèse, Organométalliques Associé au CNRS, URA 1685, Université de Bourgogne, BP 138, 21004 Dijon CEDEX, France. E-mail: gallucci.1@osu.edu

(Received 20 November 1995; accepted I9 February 1996)

Abstract

Selective crystallization of a solution of lithium isodicyclopentadienide, (isodiCp)Li, in dry thf or diethyl ether under argon has produced two lithium complexes: (isodiCp)Li(TMEDA), $\left[\operatorname{Li}\left(\mathrm{C}_{10} \mathrm{H}_{11}\right)\left(\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{~N}_{2}\right)\right]$, (4), and $\left[\mathrm{Li}(12 \text {-crown-4) }]^{+}\right.$. $\left[\mathrm{Li}(\text { isodiCp })_{2}\right]^{-}, \quad\left[\mathrm{Li}\left(\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{4}\right)_{2}\right]-$ [$\mathrm{Li}\left(\mathrm{C}_{10} \mathrm{H}_{11}\right)_{2}$], (5). In (4) the Li^{+}ion is coordinated to the two N atoms of the disordered TMEDA and is η^{5} coordinated to the Cp ring of the isodiCp ligand. The $\mathrm{Li}-(\mathrm{Cp}$ ring centroid) distance is 1.906 (7) \AA. In (5) there are two independent half-molecules of the anion and one molecule of the cation in the asymmetric unit. In each anion, the Li^{+}ion occupies a crystallographic inversion center and is η^{5}-coordinated to the two Cp rings of two isodiCp ligands. The Cp rings are in a staggered arrangement, as required by the inversion center. The $\mathrm{Li}-(\mathrm{Cp}$
ring centroid) distances for the two anions are 1.987 (3) and 2.008 (3) \AA. In the cation of (5), the Li^{+}ion is coordinated to two 12 -crown- 4 ligands, one of which is disordered. Both (4) and (5) exhibit exo coordination of the Li^{+}ion to the isodiCp ligand, with a resultant slight endo bending of this ligand.

Comment

During the past decade, lithium isodicyclopentadienide, (1) [(isodiCp)Li], has emerged as the parent of a series of bicyclic fused anions that exhibit an amazing capability for the stereoselective capture of electrophiles (Paquette, Charumilind, Kravetz, Böhm \& Gleiter, 1983; Paquette, Charumilind \& Gallucci, 1983; Gallucci, Gautheron, Gugelchuk, Meunier \& Paquette, 1987; Paquette, Moriarty, Meunier, Gautheron \& Crocq, 1988; Paquette, Moriarty, Meunier et al., 1989; Sornay, Meunier, Gautheron, O'Doherty \& Paquette, 1991; Paquette, Moriarty \& Rogers, 1989; Moriarty, Rogers \& Paquette, 1989; Paquette, Moriarty, McKinney \& Rogers, 1989; Sivik, Rogers \& Paquette, 1990; Paquette \& Sivik, 1992; Rogers, Sivik \& Paquette, 1993). Whereas covalent bonding to (1) occurs predominantly from the endo direction at 195 K , a switch-over to the exo face is seen in the vicinity of 293 K . This remarkable dependence on temperature is now recognized to be a function of the detailed structural features of (1) and its congeners in thf solution (Paquette et al., 1990; Bauer, O'Doherty, Schleyer \& Paquette, 1991; Bauer, Sivik, Friedrich, Schleyer \& Paquette, 1992; Paquette, Sivik, Bauer \& Schleyer, 1994). By means of one- and twodimensional NMR analysis involving the use of 96% ${ }^{6} \mathrm{Li}$-enriched lithium in thf $-d_{8}$ as solvent, it has proven possible to demonstrate that the contact ion pair (2), with the metal ion η^{5}-coordinated exo, is the dominant species near room temperature. As these solutions are cooled, the concentration of the sandwich dimer (3) progressively increases until it predominates at 195 K . These structurally distinctive aggregates are believed to be stereoselective in their reactions toward complementary reagents.

(1)

$\left[\mathrm{Li}(\mathrm{THF})_{4}\right]^{+}$
(2)
(3)

Recently, success has been realised in obtaining derivatives of (2) and (3) as crystalline compounds (Zaegel et al., 1994). As a result, the earlier conclusions concerning their reaction stereochemistry have been accorded additional support. A derivative of the contact ion pair (2) has been isolated as the tetramethylethylenediamine (TMEDA) complex (4). The sandwich dimer (3) has been co-crystallized with $[\mathrm{Li}(12$-crown$\left.4)_{2}\right]^{+}$to give (5). Presented herein are detailed descriptions of the crystal structures of (4) and (5). This study has demonstrated that crystalline derivatives of (isodi$\mathrm{Cp}) \mathrm{Li}$ can be obtained from an equilibrating system in a selective manner.

(4)

(5)

In (4) the Li atom is coordinated to the two N atoms of the TMEDA group and to the Cp ring of the isodiCp ligand. The $\mathrm{Li}-\mathrm{C}$ distances for the Cp ring range from 2.219 to 2.264 (7) \AA so that the $\mathrm{Li}-\mathrm{Cp}$ interaction may be described as η^{5}. The distance between the Li atom and the ring centroid of the Cp ring is $1.906(7) \AA$, which is comparable with distances observed in $\mathrm{Li}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{3}\right)$ TMEDA (Hammel, Schwarz \& Weidlein, 1990) of $1.92 \AA$ and in $\left.\mathrm{Li}^{[} \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right]$ TMEDA (Lappert, Singh, Engelhardt \& White, 1984) of $1.93 \AA$. The orientation of the isodiCp ligand with respect to the Li atom is exo. Atoms C6 and C9 are $0.210(6)$ and 0.204 (6) \AA, respectively, from the least-squares plane through $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$ and on the opposite side of this plane from the Li atom. This results in a slight endo bending in the ligand about the $\mathrm{Cl}-\mathrm{C} 5$ bond. The bending can also be described by the dihedral angle between the least-squares planes through $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$ and $\mathrm{C} 6-\mathrm{C} 5-\mathrm{Cl}-$ C 9 , which is $8.4(1)^{\circ}$ for this structure. The $\mathrm{N} 1-\mathrm{Li}-$ N 2 angle of $83.5(2)^{\circ}$ is as expected for TMEDA bound to Li .
Structure (5) can be considered as an ion pair consisting of $\left[\mathrm{Li}(\text { isodiCp })_{2}\right]^{-}$and $\left[\mathrm{Li}(12-\text { crown-4 })_{2}\right]^{+}$. There is little difference between the two independent molecules of $\left[\mathrm{Li}(\text { isodiCp })_{2}\right]^{-}$(labeled as A and B) in the asymmetric unit. Each shows an exo arrangement of

Fig. 1. Molecular structure of (4) drawn with 30% probability displacement ellipsoids for the non-H atoms. Only one of the ethylene orientations of the disordered TMEDA ligand is shown. The H atoms are represented by circles of an arbitrary radii.
the isodiCp ligands with respect to Li , with an η^{5} interaction between each Cp ring and the Li atom. In B the $\mathrm{Li}-\mathrm{C}$ distances for the Cp ring are in a narrower range $[2.300(3)-2.341$ (3) \AA] than for A [2.292 (3)$2.389(3) \AA$]. The $\mathrm{Li}-$ (ring centroid) distances are 1.987 (3) for B and 2.008 (3) \AA for A. These distances are all significantly longer than the analogous distances in (4). Other structures with $\mathrm{Li}-\mathrm{C}$ distances comparable with those in (5) are $\left[\mathrm{C}_{5} \mathrm{H}_{2}\left(\mathrm{SiMe}_{3}\right)_{3}\right] \mathrm{Li}(p m d e t a)$ [2.3042.350 (6) Å; Jutzi, Schlüter, Krüger \& Pohl, 1983], $\mathrm{Li}\left[\mathrm{C}_{5} \mathrm{H}_{2}\left(\mathrm{SiMe}_{3}\right)_{3}\right]$ TMEDA $[2.277-2.378(16)$ and 2.287-2.364 (15) Aं; Jutzi, Schlüter, Pohl \& Saak, 1985], (indenyl)Li(TMEDA) [2.279-2.379 (4) \AA; Rhine \& Stucky, 1975] and (12-crown-4)Li $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ [2.3442.419 (5) Å; Chen, Jutzi, Leffers, Olmstead \& Power, 1991]. Although the $\mathrm{Li}-\mathrm{C}$ distances in (5) are greater than those in (4), the metrical parameters of the isodiCp ligands in (4) and (5) are in agreement within two or three e.s.d.'s. The isodiCp ligands exhibit the same degree of bending in (5) as in (4): atoms C14B and C17B are each 0.202 (4) \AA out of the best least-squares plane through $\mathrm{C} 9 B-\mathrm{C} 10 B-\mathrm{C} 11 B-\mathrm{C} 12 B-\mathrm{C} 13 B$, and atoms $\mathrm{C} 14 A$ and $\mathrm{C} 17 A$ are 0.165 (3) and 0.179 (4) \AA away from the analogous plane in molecule A. The endo bending of the ligand about the $\mathrm{C} 9-\mathrm{C} 13$ bond is away from the Li atom in both cases, as it is in (4). The dihedral angle which describes this bending [defined as above for structure (4)] is 6.9 (2) for A and 8.1 (2) ${ }^{\circ}$ for B. Each Li atom is on an inversion center, so that the Cp rings are in a staggered arrangement and the isodiCp ligands point in opposite directions.

Fig. 2. Molecular structure of the two independent $\left[(\operatorname{isodiCp})_{2} \mathrm{Li}\right]^{-}$ molecules of (5) drawn with 50% probability displacement ellipsoids. The H atoms are represented by circles of an arbitrary radii.

Fig. 3. Molecular structure of the cation of (5), $\left[\mathrm{Li}(12 \text {-crown-4) }]^{+}\right.$, drawn with 50% probability displacement ellipsoids. The alternate orientation for crown B has been omitted for clarity. The H atoms are represented by circles of an arbitrary radii.

The $\left[\mathrm{Li}(12 \text {-crown-4) }]^{+}\right.$cation of (5) has often been reported (Chen et al., 1991; Power, 1988). The structure here is typical of earlier cases, with the Li atom coordinated to eight O atoms with a wide range of $\mathrm{Li}-$ O distances: $2.225(7)-2.601$ (7) \AA. The arrangement of the O atoms about the Li^{+}ion can be described as a distorted square antiprism with approximate $D_{4 d}$ symmetry.

Experimental

The synthesis of (4) involved adding TMEDA (3.84 mmol) dropwise to a suspension of (isodiCp)Li (2.10 mmol) in dry diethyl ether under Ar, concentrating the solvent to low volume after 3 h at room temperature, and cooling to 253 K . Air- and moisture-sensitive crystals were obtained in 80% yield. The data-collection crystal was mounted in a glass capillary under a nitrogen atmosphere.

The synthesis of (5) was carried out by dropwise addition of 12 -crown-4 (1.76 mmol) to a solution of (isodiCp)Li (0.90 mmol) in dry thf, concentration of the solvent to low volume after 1 h at room temperature, and cooling to 253 K . Yellow air-sensitive crystals were obtained in 75% yield. The data crystal was coated with Paratone N and quickly placed in the liquid-nitrogen-cooled gas stream on the diffractometer (Hope, 1987). All X-ray work was performed at 203 K .

Compound (4)

Crystal data
$\left[\mathrm{Li}\left(\mathrm{C}_{10} \mathrm{H}_{11}\right)\left(\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{~N}_{2}\right)\right]$
$M_{r}=254.34$
Monoclinic
$P 2_{1} / c$
$a=8.216(2) \AA$
$b=16.164(2) \AA$
$c=12.762(2) \AA$
$\beta=107.12(2)^{\circ}$
$V=1619.7(5) \AA^{3}$
$Z=4$
$D_{x}=1.043 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Rigaku AFC- $5 S$ diffractometer
$\omega-2 \theta$ scans
Absorption correction: none
3197 measured reflections
2861 independent reflections 916 observed reflections
$[I>2 \sigma(I)]$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059$
$w R\left(F^{2}\right)=0.189$
$S=1.00$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=11-13^{\circ}$
$\mu=0.060 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Equidimensional chunk
$0.38 \times 0.38 \times 0.38 \mathrm{~mm}$
Pale tan
$R_{\text {int }}=0.038$
$\theta_{\text {max }}=25^{\circ}$
$h=0 \rightarrow 9$
$k=0 \rightarrow 19$
$l=-15 \rightarrow 14$
6 standard reflections monitored every 150 reflections
intensity decay: 1.6%

$$
\begin{aligned}
& (\Delta / \sigma)_{\max }=-0.004 \\
& \Delta \rho_{\max }=0.18 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.19 \mathrm{e}^{-3}
\end{aligned}
$$

Extinction correction: none

2859 reflections
175 parameters
H -atom parameters not refined
$w^{\prime}=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0608 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$

Atomic scattering factors from International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)

Table 1. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(\AA^{2}\right)$ for (4)

$U_{\text {eq }}=(1 / 3) \sum_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }} / U_{\text {iso }}$
N1	-0.2844 (4)	0.8035 (2)	0.0639 (3)	0.0726 (10)
N2	0.0455 (4)	0.7972 (2)	0.2209 (3)	0.0675 (10)
C1	-0.2927 (6)	0.9991 (2)	0.2079 (4)	0.0592 (11)
C2	-0.2350 (7)	1.0238 (2)	0.1196 (4)	0.0776 (14)
C3	-0.0573 (8)	1.0264 (3)	0.1590 (5)	0.085 (2)
C4	-0.0030 (6)	1.0066 (2)	0.2708 (4)	0.0782 (13)
C5	-0.1506 (6)	0.9884 (2)	0.2998 (3)	0.0573 (10)
C6	-0.2172 (5)	0.9758 (2)	0.3964 (3)	0.0647 (11)
C7	-0.2950 (6)	1.0596 (3)	0.4186 (4)	0.0798 (14)
C8	-0.4492 (6)	1.0713 (3)	0.3165 (4)	0.0859 (14)
C9	-0.4468 (5)	0.9924 (2)	0.2470 (3)	0.0667 (12)
C10	-0.3833 (5)	0.9297 (2)	0.3399 (3)	0.0719 (13)
Cllat	-0.1662 (16)	0.7336 (7)	0.0664 (11)	0.062 (4)
C12A \dagger	-0.0651 (19)	0.7199 (7)	0.1827 (11)	0.076 (5)
C11B \ddagger	-0.2043 (9)	0.7220 (4)	0.1102 (9)	0.067 (3)
C12B \ddagger	-0.0100 (10)	0.7310 (5)	0.1393 (8)	0.069 (3)
C13	-0.4555 (6)	0.7918 (3)	0.0748 (4)	0.112 (2)
C14	-0.2993 (8)	0.8283 (3)	-0.0476 (4)	0.133 (2)
C15	0.2083 (7)	0.8164 (4)	0.2056 (6)	0.169 (3)
C16	0.0681 (8)	0.7787 (4)	0.3351 (4)	0.140 (2)
Li	-0.1319 (9)	0.8958 (4)	0.1731 (5)	0.065 (2)

\dagger Occupancy $=0.40(2) ; U_{\text {iso }} . \quad \ddagger$ Occupancy $=0.60(2) ; U_{\text {iso }}$.
Table 2. Selected geometric parameters ($\AA,{ }^{\circ}$) for (4)

N1-C14	1.448 (5)	C2-Li	2.264 (7)
$\mathrm{N} 1-\mathrm{Cl} 3$	1.465 (5)	C3-C4	1.400 (6)
$\mathrm{Nl}-\mathrm{Cl1A}$	1.484 (11)	C3-Li	2.219 (7)
$\mathrm{N} 1-\mathrm{Cl1B}$	1.513 (8)	C4-C5	1.399 (5)
$\mathrm{N} 1-\mathrm{Li}$	2.170 (7)	C4- Li	2.260 (7)
N2-C15	1.441 (5)	C5-C6	1.502 (5)
N2-C16	1.444 (5)	$\mathrm{C} 5-\mathrm{Li}$	2.242 (7)
N2-C12B	1.468 (7)	C6-C10	1.535 (5)
$\mathrm{N} 2-\mathrm{Cl} 12 \mathrm{~A}$	1.536 (13)	C6-C7	1.560 (5)
N 2 - Li	2.125 (7)	C7-C8	1.538 (5)
$\mathrm{Cl}-\mathrm{C} 5$	1.401 (5)	C8-C9	1.557 (5)
$\mathrm{Cl}-\mathrm{C} 2$	1.403 (5)	C9-C10	1.530 (5)
$\mathrm{Cl}-\mathrm{C} 9$	1.496 (5)	$\mathrm{Cl1A}-\mathrm{Cl} 2 \mathrm{~A}$	1.49 (2)
$\mathrm{Cl}-\mathrm{Li}$	2.252 (7)	$\mathrm{C} 11 \mathrm{R}-\mathrm{C} 12 R$	1.536 (12)
$\mathrm{C} 2-\mathrm{C} 3$	1.398 (5)		
C14-N1-Cl3	108.8 (4)	C3-C2-C1	106.4 (4)
$\mathrm{Cl4}-\mathrm{N} 1-\mathrm{Cl1A}$	95.6 (7)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	110.2 (4)
$\mathrm{Cl3}-\mathrm{N} 1-\mathrm{Cl1A}$	122.7 (7)	C5-C4-C3	106.1 (4)
$\mathrm{Cl} 4-\mathrm{Nl}-\mathrm{Cl1B}$	121.7 (5)	C4-C5-C1	109.0 (4)
$\mathrm{Cl} 3-\mathrm{Nl}-\mathrm{Cl1B}$	99.8 (5)	C4-C5-C6	143.0 (5)
$\mathrm{C} 14-\mathrm{Nl}-\mathrm{Li}$	107.8 (3)	$\mathrm{Cl}-\mathrm{C} 5-\mathrm{C} 6$	106.8 (4)
C13-N1-Li	114.6 (3)	C5-C6-C10	99.7 (3)
C11A-N1-Li	105.0 (5)	C5-C6-C7	107.4 (3)
$\mathrm{C} 11 \mathrm{~B}-\mathrm{N} 1-\mathrm{Li}$	104.2 (4)	$\mathrm{C} 10-\mathrm{C} 6-\mathrm{C} 7$	98.7 (3)
$\mathrm{C} 15-\mathrm{N} 2-\mathrm{Cl} 6$	109.4 (4)	C8-C7-C6	103.4 (3)
$\mathrm{C} 15-\mathrm{N} 2-\mathrm{Cl} 2 \mathrm{~B}$	99.6 (5)	C7-C8-C9	103.7 (3)
$\mathrm{C} 16-\mathrm{N} 2-\mathrm{Cl2B}$	119.1 (5)	$\mathrm{Cl}-\mathrm{C} 9-\mathrm{C} 10$	100.2 (3)
$\mathrm{Cl} 5-\mathrm{N} 2-\mathrm{Cl} 2 \mathrm{~A}$	128.1 (7)	C1-C9-C8	106.6 (3)
$\mathrm{Cl} 6-\mathrm{N} 2-\mathrm{Cl2A}$	92.4 (6)	C10-C9-C8	99.2 (3)
C15-N2-Li	112.6 (4)	C9-C10-C6	95.5 (3)
C16-N2-Li	108.6 (3)	$\mathrm{Ni}-\mathrm{Cl1A}-\mathrm{Cl} 2 \mathrm{~A}$	107.7 (11)
$\mathrm{C} 12 \mathrm{~B}-\mathrm{N} 2-\mathrm{Li}$	107.4 (4)	$\mathrm{C} 11 A-\mathrm{C} 12 A-\mathrm{N} 2$	107.5 (11)
$\mathrm{C} 12 \mathrm{~A}-\mathrm{N} 2-\mathrm{Li}$	103.1 (5)	$\mathrm{Nl}-\mathrm{Cl1B-Cl2B}$	108.2 (7)
$\mathrm{C} 5-\mathrm{Cl}-\mathrm{C} 2$	108.2 (4)	$\mathrm{N} 2-\mathrm{Cl} 2 \mathrm{~B}-\mathrm{Cl1B}$	109.0 (7)
C5-Cl-C9	106.8 (4)	$\mathrm{N} 2-\mathrm{Li}-\mathrm{N} 1$	83.5 (2)
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 9$	143.9 (5)		

Compound (5)

Crystal data
$\left[\mathrm{Li}\left(\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{4}\right)_{2}\right]\left[\mathrm{Li}\left(\mathrm{C}_{10} \mathrm{H}_{11}\right)_{2}\right]$
$M_{r}=628.71$
Triclinic
$P \overline{1}$
$a=11.818$ (1) \AA
$b=16.129$ (2) \AA
$c=9.871(1) \AA$
$\alpha=107.05(1)^{\circ}$
$\beta=108.23(1)^{\circ}$
$\gamma=88.70(1)^{\circ}$
$V=1703.6(4) \AA^{3}$
$Z=2$
$D_{x}=1.225 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
Data collection
Rigaku AFC-5S diffractometer
$\omega-2 \theta$ scans
Absorption correction: none
6348 measured reflections
6003 independent reflections
3807 observed reflections $[I>\sigma(I)]$

Refinement

Refinement on F
$R=0.054$
$w R=0.056$
$S=1.706$
3807 reflections
468 parameters
H -atom parameters not refined
$w=1 / \sigma^{2}\left(F_{o}\right)$
$(\Delta / \sigma)_{\text {max }}=0.017$
$\Delta \rho_{\text {max }}=0.32 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.26 \mathrm{e}^{-3}$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=10.5-15.0^{\circ}$
$\mu=0.078 \mathrm{~mm}^{-1}$
$T=203 \mathrm{~K}$
Rectangular rod
$0.50 \times 0.31 \times 0.31 \mathrm{~mm}$ Pale yellow
$R_{\text {int }}=0.025$
$\theta_{\text {max }}=25.0^{\circ}$
$h=0 \rightarrow 14$
$k=-18 \rightarrow 19$
$l=-11 \rightarrow 10$
5 standard reflections monitored every 150 reflections
intensity decay: <1\%

Extinction correction:
Extinction coefficient:

$$
1.6(1) \times 10^{-6}
$$

Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV, Tables 2.2A and 2.3.1) (C, O, Li) and Stewart, Davidson \& Simpson (1965) (H)

Table 3. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(\AA^{2}\right)$ for (5)

$U_{\mathrm{cq}}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} . \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }} / U_{\text {iso }}$
O1A	0.5565 (2)	0.1981 (1)	0.4620 (2)	0.0458 (7)
O2A	0.5289 (2)	0.3706 (1)	0.4776 (2)	0.0445 (6)
O3A	0.3235 (2)	0.3212 (1)	0.2361 (2)	0.0518 (7)
O4A	0.3495 (2)	0.1495 (1)	0.2224 (2)	0.0523 (7)
C1A	0.5619 (3)	0.2578 (2)	0.6002 (3)	0.050 (1)
C2A	0.6034 (3)	0.3438 (2)	0.6020 (3)	0.051 (1)
C3A	0.4203 (3)	0.4012 (2)	0.4956 (4)	0.055 (1)
C4A	0.3429 (3)	0.4050 (2)	0.3466 (4)	0.059 (1)
C5A	0.2254 (3)	0.2690 (3)	0.2323 (5)	0.077 (1)
C6A	0.2362 (3)	0.1786 (3)	0.1595 (4)	0.069 (1)
C7A	0.3605 (3)	0.1246 (2)	0.3532 (4)	0.060 (1)
C8A	0.4879 (3)	0.1179 (2)	0.4251 (4)	0.061 (1)
O1B \dagger	0.6981 (4)	0.2693 (3)	0.3098 (5)	0.035 (1)
O2B \dagger	0.5636 (4)	0.1187 (3)	0.1241 (5)	0.044 (1)

Table 4. Selected geometric parameters $\left(\AA,^{\circ}\right)$ for (5)

O 14 -Li3	2.413 (6)	C13A-Li2	2.324 (2)
O2A-Li3	2.375 (6)	C14A-C15A	1.554 (4)
$\mathrm{O} 3 \mathrm{~A}-\mathrm{Li} 3$	2.304 (6)	C14A-C18A	1.534 (4)
O4A-Li3	2.388 (6)	C15A-C16A	1.547 (4)
$\mathrm{O} 18-\mathrm{Li} 3$	2.225 (7)	C16A-C17A	1.556 (4)
$\mathrm{O} 2 B-\mathrm{Li} 3$	2.431 (7)	C17A-C18A	1.546 (4)
O 3 B -Li3	2.282 (7)	$\mathrm{C} 9 \mathrm{~B}-\mathrm{C} 10 \mathrm{~B}$	1.404 (4)
O4B-Li3	2.601 (7)	$\mathrm{C} 9 \mathrm{~B}-\mathrm{C} 13 B$	1.403 (4)
$\mathrm{OIC}-\mathrm{Li} 3$	2.356 (16)	$\mathrm{C} 9 B-\mathrm{C} 17 B$	1.507 (4)
$\mathrm{O} 2 \mathrm{C}-\mathrm{Li} 3$	2.409 (12)	C9B-Lil	2.300 (2)
$\mathrm{O} 3 \mathrm{C}-\mathrm{Li} 3$	2.322 (15)	C10B-C11B	1.411 (4)
O4C-Li3	2.411 (15)	C10B-Lil	2.334 (3)
C9A-C10A	1.411 (4)	$\mathrm{C} 11 B-\mathrm{C} 12 B$	1.412 (4)
C9A-C13A	1.400 (4)	C11B-Lil	2.318 (3)
C9A-C17A	1.507 (4)	$\mathrm{C} 12 B-\mathrm{C} 13 B$	1.407 (4)
C9A-Li2	2.292 (3)	C12B-Lil	2.341 (3)
C10A-Cl1A	1.406 (4)	$\mathrm{Cl} 3 B-\mathrm{C} 14 B$	1.509 (4)
C10A-Li2	2.328 (3)	C13B-Lil	2.304 (3)
$\mathrm{C} 11 A-\mathrm{Cl} 2 A$	1.409 (4)	C14B-C15B	1.548 (4)
$\mathrm{Cli} A-\mathrm{Li} 2$	2.353 (3)	C14B-C18B	1.538 (4)
C12A-C13A	1.411 (4)	C15B-C16B	1.554 (4)
C12A-Li2	2.389 (3)	C16B-C17B	1.555 (4)
C13A-C14A	1.507 (4)	C17B-C18B	1.535 (4)
C10A-C9A-C13A	108.7 (3)	$\mathrm{C} 10 \mathrm{~B}-\mathrm{C} 9 B-\mathrm{C} 13 B$	108.8 (2)
C10A-C9A-C17A	144.1 (3)	$\mathrm{C} 10 \mathrm{~B}-\mathrm{C} 9 B-\mathrm{Cl} 17 \mathrm{~B}$	143.7 (3)

$\mathrm{C} 13 A-\mathrm{C} 9 A-\mathrm{C} 17 A$	$106.6(2)$	$\mathrm{C} 13 B-\mathrm{C} 9 B-\mathrm{C} 17 B$	$106.6(2)$
$\mathrm{C} 9 A-\mathrm{C} 10 A-\mathrm{C} 11 A$	$106.6(2)$	$\mathrm{C} 9 B-\mathrm{C} 10 B-\mathrm{C} 11 B$	$106.7(2)$
$\mathrm{C} 10 A-\mathrm{C} 11 A-\mathrm{C} 12 A$	$109.6(3)$	$\mathrm{C} 10 B-\mathrm{C} 11 B-\mathrm{C} 12 B$	$109.3(3)$
$\mathrm{C} 11 A-\mathrm{C} 12 A-\mathrm{C} 13 A$	$106.6(3)$	$\mathrm{C} 11 B-\mathrm{C} 12 B-\mathrm{C} 13 B$	$106.7(2)$
$\mathrm{C} 9 A-\mathrm{C} 13 A-\mathrm{C} 12 A$	$108.5(2)$	$\mathrm{C} 9 B-\mathrm{C} 13 B-\mathrm{C} 12 B$	$108.6(3)$
$\mathrm{C} 9 A-\mathrm{C} 13 A-\mathrm{C} 14 A$	$106.9(2)$	$\mathrm{C} 9 B-\mathrm{C} 13 B-\mathrm{C} 14 B$	$106.5(2)$
$\mathrm{C} 12 A-\mathrm{C} 13 A-\mathrm{C} 14 A$	$143.8(3)$	$\mathrm{C} 12 B-\mathrm{C} 13 B-\mathrm{C} 14 B$	$143.9(3)$
$\mathrm{C} 13 A-\mathrm{C} 14 A-\mathrm{C} 15 A$	$107.2(2)$	$\mathrm{C} 13 B-\mathrm{C} 14 B-\mathrm{C} 15 B$	$107.4(2)$
$\mathrm{C} 13 A-\mathrm{C} 14 A-\mathrm{C} 18 A$	$100.0(2)$	$\mathrm{C} 13 B-\mathrm{C} 14 B-\mathrm{C} 18 B$	$100.3(2)$
$\mathrm{C} 15 A-\mathrm{C} 14 A-\mathrm{C} 18 A$	$99.4(2)$	$\mathrm{C} 15 B-\mathrm{C} 14 R-\mathrm{C} 18 B$	$99.6(2)$
$\mathrm{C} 14 A-\mathrm{C} 15 A-\mathrm{C} 16 A$	$103.6(2)$	$\mathrm{C} 14 B-\mathrm{C} 15 B-\mathrm{C} 16 B$	$103.1(2)$
$\mathrm{C} 15 A-\mathrm{C} 16 A-\mathrm{C} 17 A$	$103.2(2)$	$\mathrm{C} 15 B-\mathrm{C} 16 B-\mathrm{C} 17 B$	$103.3(2)$
$\mathrm{C} 9 A-\mathrm{C} 17 A-\mathrm{C} 16 A$	$107.8(2)$	$\mathrm{C} 9 B-\mathrm{C} 17 B-\mathrm{C} 16 B$	$106.4(2)$
$\mathrm{C} 9 A-\mathrm{C} 17 A-\mathrm{C} 18 A$	$99.8(2)$	$\mathrm{C} 9 B-\mathrm{C} 17 B-\mathrm{C} 18 B$	$100.4(2)$
$\mathrm{C} 16 A-\mathrm{C} 17 A-\mathrm{C} 18 A$	$99.2(2)$	$\mathrm{C} 16 B-\mathrm{C} 17 B-\mathrm{C} 18 B$	$99.8(2)$
$\mathrm{C} 14 A-\mathrm{C} 18 A-\mathrm{C} 17 A$	$94.9(2)$	$\mathrm{C} 14 B-\mathrm{C} 18 B-\mathrm{C} 17 B$	$94.8(2)$

As seen in an earlier model for (4) (Zaegel et al., 1994), the large anisotropic displacement parameters for the TMEDA ligand, in particular for C 11 and C 12 , along with a short $\mathrm{C} 11-\mathrm{Cl2}$ bond length of $1.312(10) \AA$, indicate a disorder problem for this group with respect to the orientation of the ethylene bridge. This bridge was modeled here (SHELXL93; Sheldrick, 1993) with two sets of atoms: C11A$\mathrm{Cl} 2 A$ and $\mathrm{Cl1B-C12B}$, with occupancy factors of 0.40 (2) and 0.60 (2), respectively. These two bond lengths were restrained to be equal and all four atoms were refined isotropically. Several Li(TMEDA) structures in the literature exhibit this type of disorder: $\mathrm{Li}\left[\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right]$ TMEDA (Lappert et al., 1984), $\mathrm{Li}\left\{\mathrm{C}_{5} \mathrm{H}_{2}\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right]_{3}\right\}$ TMEDA (Jutzi et al., 1985), (indenyl)Li(TMEDA) (Rhine \& Stucky, 1975), (triphenylmethyl)Li(TMEDA) (Brooks \& Stucky, 1972) and (naphthalenide)Li(TMEDA) (Brooks, Rhine \& Stucky, 1972). H atoms were added to (4) at calculated positions and readjusted using a riding model. For each set of methyl group H atoms, a torsion angle was refined in order to determine the orientation of the H atoms about the methyl C atom (AFIX137 in SHELXL93).

The unit cell of (5) contains two independent $\left[\mathrm{Li}(\text { isodiCph }]^{-}\right.$ complexes and two $\left[\mathrm{Li}(12 \text {-crown- } 4)_{2}\right]^{+}$ions. Two Li^{+}ions occupy symmetry inequivalent inversion centers (Lil at $1,0.5,0$ and Li 2 at $0,0,0.5$) and each is coordinated by two isodiCp ligands. There is a third Li^{+}ion, Li 3 , at a general position and it is coordinated by two 12 -crown- 4 molecules, labeled as A and B. Crown B is disordered in that it exists in an alternate orientation, labeled as crown C. The atoms for crown C, readily apparent on a difference electron-density map, were refined only isotropically. The occupancy factor, α, for crown B refined to 0.69 (1). Since the occupancy factor for crown C was constrained to be $1-\alpha$, its final value was 0.31 (1). H atoms were included in the model at calculated positions.

For both compounds, data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1991); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1989); program(s) used to solve structures: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structures: SHELXL93 (Sheldrick, 1993) for (4); TEXSAN for (5). For both compounds, molecular graphics: ORTEPII (Johnson, 1976).

The Ohio State group thanks the National Science Foundation for financial support. The diffractometer was purchased with a grant from the National Institutes of Health.

Lists of structure factors, anisotropic displacement parameters, H -atom coordinates and complete geometry, together with a unit-cell diagram of structure (5), have been deposited with the IUCr (Reference: BK1216). Copies may be obtained through The Managing Editor, International Union of Crystallography. 5 Abbey Square, Chester CHI 2HU, England.

References

Bauer, W., O'Doherty, G. A., Schleyer, P. von R. \& Paquette, L. A. (1991). J. Am. Chem. Soc. 113, 7093-7100.

Bauer, W., Sivik, M. R., Friedrich, D., Schleyer, P. von R. \& Paquette, L. A. (1992). Organometallics, 11, 4178-4189.

Brooks. J. J. \& Stucky, G. D. (1972). J. Am. Chem. Soc. 94. 73337338.

Brooks, J. J., Rhine, W. \& Stucky, G. D. (1972). J. Am. Chem. Soc. 94. 7346-7351.

Chen, H., Jutzi, P., Leffers, W., Olmstead, M. M. \& Power, P. P. (1991). Organometallics, 10, 1282-1286.

Gallucci, J. C., Gautheron, B., Gugelchuk, M., Meunier, P. \& Paquette, L. A. (1987). Organometallics, 6, 15-19.

Hammel, A., Schwarz. W. \& Weidlein. J. (1990). Acta Crust. C46, 2337-2339.
Hope, H. (1987). Experimental Organometallic Chemistr:: A Practicum in Synthesis and Characterization. Am. Chem. Soc. Symp. Ser. No. 357, edited by A. L. Wayda \& M. Y. Darensbourg, pp. 257-262. Washington, DC: American Chemical Society.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Jutzi. P., Schlüter, E., Krüger, C. \& Pohl, S. (1983). Angen: Chem. Int. Ed. Engl. 22, 994.
Jutzi, P., Schlüter, E., Pohl, S. \& Saak, W. (1985). Chem. Ber. 118, 1959-1967.
Lappert, M. F., Singh, A., Engelhardt, L. M. \& White, A. H. (1984). J. Organomet. Chem. 262. 271-278.

Molecular Structure Corporation (1989). TEXSAN. Single Crystal Structure Analysis Sofivare. MSC. 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1991). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive. The Woodlands, TX 77381, USA.
Moriarty, K. J.. Rogers, R. D. \& Paquette L. A. (1989). Organometallics, 8. 1512-1517.
Paquette, L. A., Bauer, W., Sivik. M. R., Bühl. M., Feigel, M. \& Schleyer, P. von R. (1990). J. Am. Chem. Soc. 112, 8776-8789.
Paquette, L. A., Charumilind. P. \& Gallucci, J. C. (1983). J. Am. Chem. Soc. 105, 7364-7373.
Paquette, L. A., Charumilind. P., Kravetz, T. M., Böhm, M. C. \& Gleiter, R. (1983). J. Am. Chem. Soc. 105, 3126-3135.
Paquette, L. A., Moriarty, K. J.. McKinney, J. A. \& Rogers, R. D. (1989). Organometallics, 8, 1707-1713.

Paquette, L. A., Moriarty, K. J.. Meunier, P., Gautheron, B. \& Crocq. V. (1988). Organometallics, 7, 1873-1875.

Paquette, L. A., Moriarty, K. J., Meunier, P.. Gautheron, B.. Sornay, C., Rogers, R. D. \& Rheingold, A. L. (1989). Organometallics, 8. 2159-2167.
Paquette, L. A., Moriarty, K. J. \& Rogers, R. D. (1989). Organometallics, 8, 1506-1511.
Paquette, L. A. \& Sivik, M. R. (1992). Organometallics, 11, 35033505.

Paquette, L. A., Sivik, M. R., Bauer, W. \& Schleyer, P. von R. (1994). Organometallics, 13, 4919-4927.
Power, P. P. (1988). Acc. Chem. Res. 21, 147-153.
Rhine, W. E. \& Stucky, G. D. (1975). J. Am. Chem. Soc. 97, 737-743.
Rogers, R. D., Sivik, M. R. \& Paquette, L. A. (1993). J. Organomer. Chem. 450, 125-135.
Sheldrick, G. M. (1990). Acta Crust. A46, 467-473.

Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Sivik, M. R., Rogers, R. D. \& Paquette, L. A. (1990). J. Organomet. Chem. 397, 177-185.
Sornay, C., Meunier, P., Gautheron, B., O’Doherty, G. A. \& Paquette, L. A. (1991). Organometallics, 10, 2082-2083.

Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.
Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1144.
Zaegel, F., Gallucci, J. C., Meunier, P., Gautheron, B., Sivik, M. R. \& Paquette, L. A. (1994). J. Am. Chem. Soc. 116, 6466-6467.

Acta Cryst. (1996). C52, 1679-1681

Aqua(hexacyanoferrato- N)bis(μ-glycine)glycinecerium(III) Monohydrate

Santiago García-Granda, ${ }^{a}$ Angel Dago Morales, ${ }^{b}$ Edilso Reguera Ruíz ${ }^{b}$ and José Fernández Bertrán ${ }^{b}$

a Departamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo, Avda. Julián Clavería, 8, 33006 Oviedo, Spain, and ${ }^{b}$ Dirección de Química, Centro Nacional de Investigaciones Científicas, Apartado 6990, Ciudad de la Habana, Cuba. E-mail: sgg@dwarfl.quimica. uniovies
(Received 15 November 1995; accepted 4 March 1996)

Abstract

The structure of the title compound, $\left[\mathrm{Ce}\left\{\mathrm{Fe}(\mathrm{CN})_{6}\right\}\right.$ $\left.\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NO}_{2}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}$, consists of FeC_{6} octahedra linked to an eight-coordinate cerium ion via two cyanide bridging $\mathrm{Ce}-\mathrm{N}-\mathrm{C}-\mathrm{Fe}$ groups. The rest of the coordination polyhedron of the cerium is formed by six O atoms: one from a molecule of water and five from glycine molecules. The three-dimensional framework is formed through $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogenbonding interactions. Two glycine molecules form bifurcated hydrogen bonds. An additional uncoordinated molecule of water is within hydrogen-bonding distance of two glycine molecules.

Comment

In a previous paper, we reported the synthesis and the characterization, by X-ray powder diffraction, thermal analysis and Mössbauer and IR spectroscopy, of the hexacyanocobaltate(III) and the hexacyanoferrate(III) of lanthanum and glycine (Fernández-Bertrán, Reguera, Dago \& López, 1996). We found that glycine takes the neutral zwitterion form. As a continuation of our studies of the metal-ligand bond interactions in this type of complex, the crystal structure of the isotypic cerium analogue, (I), was determined.

(I)

The low spin Fe^{3+} ion is octahedrally coordinated to six cyano groups. The average $\mathrm{Fe}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ bond distances are 1.941 (3) and 1.143 (4) \AA, respectively, which compare well with literature values (Mullica, Herbert, Sappenfield \& David, 1988). The Ce^{3+} ion is eight-coordinate. This is fairly common in molecular complexes of the lanthanide series (Hulliger, Landolt \& Vetsch, 1976). Only two cyano groups are coordinated to cerium ($\mathrm{Ce}-\mathrm{N} 1$ and $\mathrm{Ce}-\mathrm{N} 2$), which is in accordance with IR and Mössbauer results (Fernández-Bertrán et al., 1996), with an average $\mathrm{Ce}-\mathrm{N}$ bond length of 2.623 (3) \AA. The rest of the coordination polyhedron is formed by six O atoms, one from water (O7) and five from glycine moieties. The average $\mathrm{Ce}-\mathrm{O}$ bond length is $2.502(2) \AA$. The structure consists of FeC_{6} octahedra linked to cerium via two cyanide bridging $\mathrm{Ce}-\mathrm{N}-\mathrm{C}-$ Fe linkages. The three-dimensional framework is completed through hydrogen-bonding interactions (Table 3). Among these, the most significant are the $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ interactions that link glycine NH_{3} groups with the N atoms of the cyano groups not bonded to the Ce ion. The uncoordinated O atom of the glycine (O6) forms three hydrogen bonds, of which two are strong (to the water molecule coordinated to the cerium ion, $07-$

Fig. 1. EUCLID (Spek, 1982) plot, showing the atomic numbering scheme. Displacement ellipsoids are shown at the 50% probability level for non-H atoms; H atoms are represented by spheres of arbitrary radii.

[^0]: Lists of structure factors, anisotropic displacement parameters, H atom coordinates and complete geometry have been deposited with the IUCr (Reference: KAl176). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

